
Solving the nonlinear complementarity problem

Hans Kremers*and Dolf Talman†

April 6, 2020

Abstract

In order to solve the nonlinear complementarity problem we propose a simplicial restart algorithm that
subdivides the set on which the problem is defined into simplices and generates from an arbitrarily chosen
starting point a piecewise linear either leading to an approximate solution or diverging towards infinity.
We will give a convergence condition under which the algorithm will find an approximate solution. If the
accuracy of the approximate solution is not sufficient the algorithm can be restarted at the approximate
solution with a finer simplicial subdivision. The piecewise linear path generated by the algorithm is
followed by a sequence of adjacent simplices of varying dimension.

KEYWORDS: Nonlinear Complementarity Problem, simplicial variable dimension restart algorithm, path
following algorithm, piecewise linear path

*ModlEcon S.a.r.l.-S, Rue de l’Alzette 94, L-4010 Esch-sur-Alzette, Luxembourg. Email: hk01@modlecon.com. Mobile: +49
171 2273566. Skype: hanskremers

†Tilburg School of Economics and Management, Econometrics and Operations Research, Tilburg University, P.O. Box 90153,
NL-5000 LE Tilburg, The Netherlands, Talman@tilburguniversity.edu

1



1 Introduction

One of the most well-known problems in the field of mathematical programming is the so-called nonlinear

complementarity problem. It’s also a problem that is frequently met when solving systems of nonlinear

equations, or computing economic equilibria and fixed points. The nonlinear complementarity problem

(NLCP) is defined as follows.

Given a continuous function f from IRn to IRn, find an x∗ ∈ IRn such that

x∗ ≥ 0, f(x∗) ≥ 0, x∗⊤f(x∗) = 0. (1)

The NLCP is a special case of the NLCP with lower and upper bounds which can be seen by taking the zero

vector as a lower bound and letting the upper bound go to infinity. A description of the NLCP with lower

and upper bounds can be found in Kremers and Talman (1990) together with a description of an algorithm

solving the NLCP with finite lower and upper bounds.

In this paper we will describe an algorithm solving the NLCP defined in (1). This algorithm will be a

generalisation of the algorithm developed in Kremers and Talman (1990). Our algorithm is a path-following

algorithm starting in an arbitrarily chosen point v ∈ IRn
+. The description of the path to be followed by the

algorithm is given in Section 2 while Section 3 describes the algorithm itself. Also a convergence condition

for the algorithm will be given because the unbounded region in (1) gives rise to possible divergence of the

algorithm. The convergence condition guarantees the existence of an upper bound to the points generated by

the algorithm. Therefore, we cannot apply the algorithm developed in Kremers and Talman (1990) in order

to solve (1). In Section 4 we describe an appropriate simplicial subdivision of IRn
+.

2 The path to be approximated by the algorithm

Starting in an arbitrary chosen point v ∈ IRn
+ the algorithm follows approximately a path of points x ∈ IRn

+

such that x satisfies
max{0, (1− ρ)vi} = xi if fi(x) > 0

max{0, (1− ρ)vi} ≤ xi ≤ vi + ρ if fi(x) = 0

xi = vi + ρ if fi(x) < 0

(2)
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for some ρ ≥ 0. Under some regularity and non-degeneracy conditions the set of points x satisfying the

conditions in (2), for ρ ≥ 0, form piecewise smooth curves. Each of these curves is either a loop or a path.

One of these paths, say P , has v as an end point for ρ = 0. If P has another end point, say x∗, the x∗ is

a solution to (1). Otherwise the path P will go towards infinity and no solution to (1) will be found. The

algorithm follows approximately this path P by making f linear on each simplex of a simplicial subdivision

of IRn
+. For an illustration of the setH(t)∩ IRn

+ for different values of t we refer to Figure 1. Without loss of
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Figure 1: The subset bd
(
H(ρ) ∩ IR2

+

)
for ρ = 0, 12 , 1, resp. ρ > 1, given v = (2, 1)⊤ and a = 4.

generality we assume that no component of f(v) equals zero. Then, through increasing ρ from zero the path

P leaves v by increasing xi from vi such that xi = vi+ρ if fi(v) < 0 and by decreasing xi from vi such that
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xi = max{0, (1− ρ)vi} if fi(v) > 0, for all i ∈ {1, . . . , n}. If along the path P , at a point x satisfying (2),

fj(x) becomes zero for some j ∈ {1, . . . , n} while xj = vj + ρ (or xj = max{0, (1− ρ)vj}) then either x

solves (1) or the path continues by decreasing (increasing) xj from vj + ρ (max{0, (1− ρ)vj}) and keeping

fj(x) = 0. If at a point x on P , satisfying (2), xj becomes equal to vj + ρ (or max{0, (1− ρ)vj}), for some

j ∈ {i | fi(x) = 0}, then the path P continues by decreasing (increasing) fj(x) from 0 and keeping xj

equal to vj + ρ (or max{0, (1 − ρ)vj}). Finally, if at a point x on P , ρ becomes equal to 1 and f(x) ≥ 0,

then fi(x) = 0 when 0 < xi ≤ vi + 1 and fi(x) ≥ 0 when xi = 0, so x is a solution of (1). Otherwise, ρ

will be increased further, keeping xi = 0 for all i such that fi(x) > 0.

3 The algorithm

The algorithm approximately follows the path P described in Section 2 by generating a piecewise linear

(piecewise linear) path P connecting v with an approximate solution x of (1) or diverging towards infin-

ity. For a description of this piecewise linear path we approximate the function f by a piecewise linear

approximation F .

To define a piecewise linear approximation F of f we need to subdivide IRn
+ into simplices. So, let Gn be

a simplicial subdivision of IRn
+ with some finite mesh. For an appropriate simplicial subdivision of IRn

+ we

refer the interested reader to Section 4.

Definition 1 The piecewise linear approximation F of f with respect to Gn at a point x ∈ IRn
+ is given by

F (x) =
n+1∑
i=1

λif(y
i)

where the convex hull σ(y1, . . . , yn+1) of y1, . . . , yn+1 in IRn
+ is an n-dimensional or n-simplex in Gn con-

taining x and where λ1, . . . , λn+1 ≥ 0 are such that x =
∑n+1

i=1 λiy
i and

∑n+1
i=1 λi = 1.

The results obtained in Section 2 with respect to f can also be applied to the piecewise linear approximation

F of f . In particular, there exists a piecewise linear path P of points in IRn
+ starting in v and ending in a

solution to (1) with respect to F or going to infinity. For each point x on the path P there exists a ρ ≥ 0
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such that for all i ∈ {1, . . . , n}

max{0, (1− ρ)vi} = xi if Fi(x) > 0

max{0, (1− ρ)vi} ≤ xi ≤ vi + ρ if Fi(x) = 0

xi = vi + ρ if Fi(x) < 0.

(3)

Notice that in (3) the sign pattern of F (x) plays a very important role. Therefore we introduce the notion of

a sign vector in IRn.

Definition 2 A vector s ∈ IRn is a sign vector if, for all i, si ∈ {−1, 0,+1}.

For a sign vector s in IRn, let I0(s) := {j | sj = 0}, I+1(s) := {j | sj = +1}, and I−1(s) := {j | sj =

−1}. Now, for each sign vector s let the set A(s) be defined by

A(s) = ∅ if s ≥ 0 and vi = 0 for all i ∈ I+1(s),

and otherwise

A(s) = {x ∈ IRn
+ | if si = +1 then max{0, (1− ρ)vi} = xi,

if si = 0 then max{0, (1− ρ)vi} ≤ xi ≤ vi + ρ,

if si = −1 then xi = vi + ρ,

with ρ ≥ 0 if s ≤ 0 or vi = 0 for all i ∈ I+1(s),

and otherwise 0 ≤ ρ ≤ 1}.

For each sign vector s, the set A0(s) is defined by

A0(s) = ∅ if s ≤ 0 or vi = 0 for all i ∈ I+1(s),

and otherwise

A0(s) = {x ∈ IRn
+ | if si = +1 then 0 = xi,

if si = 0 then 0 ≤ xi ≤ vi + ρ,

if si = −1 then xi = vi + ρ,

with ρ ≥ 1}.
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Figure 2 gives a subdivision of IRn
+ into subsets A and A0(s) for sign vectors s ∈ IRn when n = 2. From

the definitions of A(s) and A0(s) and from (3), it follows that x ∈ P satisfies x ∈ A(s) or x ∈ A0(s) and

s = sgn(F (x)), for some sign vector s.
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Figure 2: Subdivisions of IR2
+ into subsets A and A0(s) for sign vectors s ∈ IR2.

The simplicial subdivision Gn of IRn
+ has to be such that it subdivides each nonempty subsetA(s) andA0(s)

into t-simplices where t, the dimension of A(s) (A0(s)), is equal to | I0(s) | +1 (see Section 4 for an

appropriate simplicial subdivision). So, if x ∈ A(s) (or x ∈ A0(s)) there are a t-simplex σ(y1, . . . , yt+1)

in A(s) (A0(s)) and numbers and numbers λ1, . . . , λt+1 ≥ 0 such that x =
∑t+1

i=1 λiy
i and

∑t+1
i=1 λi = 1.

On the other hand, if sgn(F (x)) = s, then there existµh ≥ 0, h ̸∈ I0(s), such thatF (x) =
∑

h̸∈I0(s) µhshe(h),

where e(h) is the n-dimensional unit vector with ei(h) = 1 if i = h. Hence, if x lies on the path P , then

for some sign vector s there is a t-simplex σ(y1, . . . , yt+1) in A(s) (A0(s)) such that the system of linear

equations given by
t+1∑
i=1

λi

 f(yi)

1

−
∑

h̸∈I0(s)

µhsh

 e(h)

0

 =

 0

1

 (4)

has a solution λ∗
i ≥ 0, i = 1, . . . , t + 1, µ∗

h ≥ 0, h ̸∈ I0(s), with x =
∑t+1

i=1 λ
∗
i y

i. The vector 0 in (4)

denotes the n-vector of zeroes.
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System (4) is a system of n + 1 equations with n + 2 unknowns leaving us with a degree of freedom. So,

assuming non-degeneracy, a line segment of solutions to (4) exists which can be followed by making a linear

programming pivot step in (4). This line segment corresponds to a linear piece of P in σ defined by the

points
∑t+1

i=1 λiy
i.

In an end point of a line segment of solutions to (4) either λp = 0 for some p ∈ {1, . . . , t+1} or µj = 0 for

some j ̸∈ I0(s). If at an end point λp = 0 for some p ∈ {1, . . . , t+ 1}, then the point x =
∑

i ̸=p λiy
i lies

in the facet τ of σ opposite the vertex yp. The facet τ is either a facet of exactly one other t-simplex, say σ,

in A(s) (A0(s)), or it is not and τ lies in the boundary of A(s) (A0(s)).

Suppose σ exists. Then, in order to continue the path P inA(s) (A0(s)), a pivot step is made in (4) with the

column (f(y)T , 1)T corresponding to the unique vertex y of σ not contained in τ . The algorithm is continued

by repeating the procedure described.

Suppose σ does not exist and hence τ lies in the boundary of A(s) (A0(s)). If τ lies in Cn(s), with Cn(s)

defined as Cn(s) = ∅ if s ≤ 0 or vi = 0 for all i ∈ I+1(s), and otherwise

Cn(s) = {x ∈ IRn
+ | if si = +1 then 0 = xi,

if si = 0 then 0 ≤ xi ≤ vi + 1,

if si = −1 then xi = vi + 1},

then the algorithm has found a point x ∈ Cn(s) with sign vector s equal to sgn(x). If s ≥ 0 then x is an

approximate solution for (1). Otherwise τ is the facet of a unique t-simplex σ in A0(s) (A(s)). In order to

continue the pathP inA0(s) (A(s)), a pivot step is made in (4) with the column [f(ŷ)⊤, 1]⊤ corresponding to

the unique vertex ŷ of σ̂ not contained in τ . The algorithm is continued by repeating the procedure described.

If the facet τ of σ in the boundary ofA(s) does not lie in Cn(s), then τ is a (t−1)-simplex inA(s) orA0(s),

with s being a sign vector such that sl ̸= 0 for some l ∈ I0(s) while si = si for all i ̸= l, and the algorithm

continues in A(sl) ̸= ∅ for some l ∈ I0(s) by pivoting the column (sle(l)⊤, 0)⊤ into (4).

If at an end point of solutions to (4), µj is zero for some j ̸∈ I0(s), then at sj = 0 and sh = sh for h ̸= j.

Then x ∈ A(s) is an approximate solution to (1) if s ≥ 0 and vi = 0 for all i ∈ I+1(s). Also, x ∈ A0(s)

is an approximate solution to (1) is s ≥ 0. If these conditions do not hold then there is exactly one (t+ 1)-

simplex σ in A(s) is σ ∈ A(s) or σ ∈ A0(s) and A0(s) = ∅ (σ in A0(s) if σ ∈ A0(s) and A0(s) ̸= ∅)
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having σ as a facet. The algorithm continues by pivoting the column [f(y⊤, 1]⊤ into (4), where y is the

vertex of σ not contained in σ.

Nowwe have described how the algorithm proceeds along the pathP in the different subsetsA(s) andA0(s)

of IRn
+, we still have to describe the initialisation of the algorithm at v. At v the system (4) becomes

λ1

 f(v)

1

−
n∑

h=1

s0hµh

 e(h)

0

 =

 0

1

 (5)

having a unique solution λ1 = 1, µh = s0hfh(v) > 0, h ∈ {1, . . . , n}, where s0 = sgn(f(v)). If s0 ≥ 0 and

vi = 0 for all i ∈ I+1(s0), then the algorithm stops with an exact solution at v. Otherwise, the starting point

v is a facet of a unique 1-simplex σ(y1, y2) in A(s0) with y1 = v. The algorithm then pivots the column

[f(y2)⊤, 1]⊤ into (5).

Since all steps are unique and returning to v is impossible, the algorithm either terminates within a finite

number of steps with an approximate solution x of (1) or it follows a path towards infinity.

When an approximate solution x of (1) is found, one can measure the accuracy of approximation by taking

the smallest ϵ > 0 for which for all i ∈ {1, . . . , n}

−ϵ ≤ fi(x) if xi = 0

−ϵ ≤ fi(x) ≤ ϵ if xi > 0.

If f(x) is not accurate enough, i.e., ϵ is too large, the algorithm is repeated being started at v = x with a

finer simplicial subdivision of IRn
+. This in the hope to find a more accurate approximation within a finite

number of steps.

When a path towards infinity is followed no solution will be found. So, we have to state conditions under

which the algorithm converges towards an approximate solution of (1). Theorem (3) states conditions under

which an upper bound to the points x generated by the algorithm exists.

Theorem 1 Let f be a continuous function from IRn to IRn and let v be the starting point of the algorithm.

Assume there exists a number µ > 0 such that fi(x) > 0 whenever xi > µ. Then the algorithm terminates

within a finite number of steps with an approximate solution of (1).
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Proof: Suppose there exists a number µ > 0 such that fi(x) > 0 whenever xi > µ. We show that the

algorithm cannot generate a t-simplex σ, with vertices y1, . . . , yt+1, in the simplicial subdivision Gn of IRn
+

for which for all x ∈ σ holds that xi > µ for some i ∈ {1, . . . , n}. Without loss of generality we may

assume that vi < µ. Then, σ lies in A(s) or A0(s), where s is a sign vector such that si ≤ 0, by definition

of A(s) and A0(s). If σ is generated by the algorithm we can conclude from (4) that the i-th component of

the piecewise linear approximation F in x =
∑t+1

j=1 λjy
j ∈ σ is less than or equal to zero, i.e. Fi(x) ≤ 0.

On the other hand, by assumption, y ∈ σ implies yi > µ, so fi(yj) > 0 for all vertices yj , j = 1, . . . , t+ 1,

of σ. Since x is a convex combination of these vertices the piecewise linear approximation F in x, being the

same convex combination of f(yi), j = 1, . . . , t+ 1, must have a positive i-th component, i.e. Fi(x) > 0.

This is in contradiction with Fi(x) ≤ 0. So, σ cannot be generated by the algorithm. □

4 A simplicial subdivision of IRn
+

In order to triangulate IRn
+ one can use any simplicial subdivision. The only restriction one has to pose on

the simplicial subdivision of IRn
+ to underly the algorithm described in Section 3 is that it has to triangulate

all nonempty subsets A(s) and A0(s). In this section we propose an appropriate simplicial subdivision of

IRn
+ which is based on a combination of the V -triangulation as developed in Doup and Talman (1987) and

theK ′-triangulation as developed in Todd (1976).

To describe the simplicial subdivision of IRn
+ we need to subdivide each nonemptyA(s) into subsetsA(s, T )

and each nonempty subsetA0(s) into subsetsA0(s, T )with T ⊂ (I0(s)∪−I0(s)) such that for all i ∈ I0(s)

either i or−i belongs to T . When s ̸≥ 0 or vi > 0 for some i ∈ I+1(s), then the subsetsA(s, T ) are defined

as

A(s, T ) = ∅ if vi = 0 for some i ∈ T ,
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and otherwise

A(s, T ) = {x ∈ IRn
+ | if si = +1 then max{0, (1− ρ)vi} = xi,

if si = 0 and i ∈ T then max{0, (1− ρ)vi} ≤ xi ≤ vi + ρ,

if si = 0 and − i ∈ T then vi ≤ xi ≤ vi + ρ,

if si = −1 then xi = vi + ρ,

with ρ ≥ 0 if s ≤ 0 or vi = 0 for all i ∈ I+1(s),

and otherwise 0 ≤ ρ ≤ 1}.

When s ̸≤ 0, s ̸≥ 0, and vi > 0 for some i ∈ I+1(s), then the subsets A0(s, T ) are defined as

A0(s) = ∅ if vi = 0 for some i ∈ T ,

and otherwise

A0(s) = {x ∈ IRn
+ | if si = +1 then 0 = xi

if si = 0 and i ∈ T then 0 ≤ xi ≤ vi

if si = 0 and − i ∈ T then vi ≤ xi ≤ vi + ρ

if si = −1 then xi = vi + ρ

with ρ ≥ 1}.

Figure 3 gives a subdivision of IRn
+ into subsets A(s, T ) and A0(s, T ).

For some positive integer m, each nonempty subset A(s, T ) is subdivided into t-simplices σ(y1, π) with

vertices y1, . . . , yt+1, with t =| I0(s) | +1 the dimension of A(s, T ), such that

i) y1 = v + a(0)m−1q(0) +
∑

j∈I0(s) a(j)m
−1q(j) with integers a(j) and a(0) satisfying

if s ≤ 0 or vi = 0 for all i ∈ I+1(s) then 0 ≤ a(j) ≤ a(0) for all −j ∈ T , and

max{0, a(0)−m} ≤ a(j) ≤ a(0) for all j ∈ T , and otherwise 0 ≤ a(j) ≤ a(0) ≤ m− 1

for all j ∈ I0(s);

ii) π = (π1, . . . , πt) is a permutation of the elements of I0(s) ∪ {0} such that for all j ∈ I0(s):

if πp′ = 0, πp = j, and a(πp) = a(πp′) then p′ < p;
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Figure 3: Subdivisions of IR2
+ into subsets A(s, T ) and A0(s, T ) for sign vectors s ∈ IR2.

if πp′ = 0, πp = j, j ∈ T , and a(πp) = a(πp′)−m then p < p′;

iii) yi+1 = yi +m−1q(πi), i = 1, . . . , t;

where qj(0) = 1 for j ∈ I−1(s) or −j ∈ T and qj(0) = −vj for j ∈ I+1(s) or j ∈ T , and where

q(j) = −e(j) if − j ∈ T ,

q(j) = vje(j) if j ∈ T .

Let the simplicial subdivision ofA(s, T ) be denoted by Gn
m(s, T ). Then, the simplicial subdivision ofA(s),

denoted by Gn
m(s), is given by the union of Gn

m(s, T ) over all feasible T .

For the same positive integer m, each nonempty subset A0(s, T ) is subdivided into t-simplices σ(y1, π)

with vertices y1, . . . , yt+1, where t =| I0(s) | +1 is the dimension of A0(s, T ), such that

i) y1 = v(s, T ) + a(0)m−1q(0) +
∑

j∈I0(s) a(j)m
−1q(j) with integers a(j) and a(0) satisfying

a(0) ≥ m;

0 ≤ a(j) ≤ a(0) for all −j ∈ T ;
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a(0)−m ≤ a(j) ≤ a(0) for all j ∈ T ;

0 ≤ a(j) ≤ a(0) ≤ m− 1 for all j ∈ I0(s);

ii) π = (π1, . . . , πt) is a permutation of the elements of I0(s) ∪ {0} such that for all j ∈ I0(s):

if πp′ = 0, πp = j, and a(πp) = a(πp′) then p′ < p;

if πp′ = 0, πp = j, j ∈ T , and a(πp) = a(πp′)−m then p < p′;

iii) yi+1 = yi +m−1q(πi), i = 1, . . . , t;

where vj(s, T ) = 0 for all j ∈ I+1(s) and vj(s, T ) = vj otherwise, where qj(0) = 1 for j ∈ I−1(s) or

−j ∈ T and qj(0) = −vj for j ∈ T , and qj(0) = 0 otherwise, and where

q(j) = −e(j) if − j ∈ T ,

q(j) = vje(j) if j ∈ T .

Let the simplicial subdivision of A0(s, T ) be denoted by G0n
m (s, T ). Then, the simplicial subdivision of

A0(s), denoted by G0n
m (s), is given by the union of G0n

m (s, T ) over all T . The simplicial subdivision of IRn
+,

Gn
m, is now induced by the union of Gn

m(s) and G0n
m (s) over all possible sign vectors s, m−1 being the grid

size of the simplicial subdivision. Figure 4 gives a simplicial subdivision of IRn
+ for n = 2 andm = 2.

In Section 3 we described how to follow the path P through IRn
+ from v by making pivot steps in the system

of equations (4) with respect to a sequence of adjacent simplices σ inA(s) orA0(s) for varying sign vectors

s. After having introduced a specific simplicial subdivision of IRn
+ we now describe how a sequence of

adjacent simplices σ in this simplicial subdivision of IRn
+ can be followed, i.e., we describe how, given the

parameters y1, π, and a(h), for h ∈ I0(s) ∪ {0}, of a t-simplex σ, the parameters of a simplex σ adjacent

to σ are obtained.

The movement from a t-simplex σ(y1, π) in A(s, T ) (A0(s, T )) to an adjacent simplex σ(y1, π) is called

a replacement step when σ(y1, π) is also a t-simplex in A(s, T ) (A0(s, T )). Making a replacement step

we replace a vertex yp, for some p ∈ {1, . . . , t + 1}, of σ opposite the common facet τ of σ and σ by the

vertex y of σ not belonging to τ . The possibilities are listed in Table 1, where the (n+1)-vector a is defined

by ah = a(h), h ∈ I0(s) ∪ {0}, and ah = 0 otherwise. Notice that, in Table 1 the unit vector e(h) is an

(n+1)− vector, h = 0, 1, . . . , n. In case the replacement step with respect to yp cannot be performed, the
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Figure 4: Simplicial subdivisions of IR2
+ with grid size 1

2 .

y1 π a

p = 1 y1 +m−1q(π1) (π2, . . . , πt, π1) a+ e(π1)
1 < p < t+ 1 y1 (π1, . . . , πp−2, πp, πp−1, πp+1, . . . , πt) a
p = t+ 1 y1 −m−1q(πt) (πt, π1, . . . , πt−1) a− e(πt)

Table 1: Replacement steps.

facet τ of σ(y1, π) opposite yp lies in the boundary of A(s, T ) (A0(s, T )). Lemma 1 describes the cases

when τ lies in the boundary of A(s, T ) or A0(s, T ).

Lemma 1 Let σ(y1, π) be a t-simplex in Gn
m(s, T ) (G0n

m (s, T )) and τ the facet of σ opposite vertex yp,

1 ≤ p ≤ t + 1. Then τ lies in the boundary of A(s, T ) (A0(s, T )) if and only if one of the following

properties holds:

1) p = 1, s ̸≤ 0, vi > 0 for some i ∈ I+1(s), πi = 0, and a(π1) = m− 1

2) 1 < p < t+ 1, πp−1 = k, πp = 0, k ∈ T , and a(πp−1) = a(πp)−m

3) 1 < p < t+ 1, πp−1 = 0, and a(πp−1) = a(πp)

4) p = t+ 1, πt ̸= 0, and a(πt) = 0

5) p = t+ 1, s ̸≥ 0, s ̸≤ 0, vi > 0 for some i ∈ I+1(s), πt = 0, and a(πt) = m.

13



In cases 1 an 5 of Lemma 1, τ lies in Cn(s). In case 1, if s ̸≥ 0 then σ lies in A(s, T ) and shares τ with

a unique t-simplex σ(y1, π) in A0(s, T ) where y1 = y1 +m−1q(πt) and π = (π2, . . . , πt, π1). In case 5,

σ lies in A0(s, T ) and shares τ with a unique t-simplex σ(y1, π) in A(s, T ) where y1 = y1 − m−1q(πt)

and π = (πt, π1, . . . , πt−1). So, a replacement step is made resulting in a t-simplex in an adjoining set

A0(s, T ) in case 1 (A(s, T ) in case 5). Notice that q(0) is replaced by q(0) = q(0) +
∑

j∈I+1(s)−vje(j)

(q(0) = q(0) −
∑

j∈I+1(s)−vje(j)). In case 2, τ is a (t − 1)-simplex σ(y1, π) in A0(s, T ) where s =

s + e(k), T = T \ {k}, and π = (π1, . . . , πp−2, πp, . . . , πt). Note that q(k) disappears and q(0) becomes

q(0) = q(0) + q(k)−
∑

j∈I+1(s)−vje(j) when σ ∈ A(s, T ) (q(0) = q(0) + q(k) when σ ∈ A0(s, T )). In

case 3, if πp = k and vk > 0, σ shares τ with a t-simplex σ(y1, π) in A(s, T ) when σ ∈ A(s, T ) (A0(s, T )

when σ ∈ A0(s, T )) where T = T \ {h} ∪ {−h}, h = −k if −k ∈ T , h = k if k ∈ T . If in case 3

πp = k and vk = 0 with −k ∈ T , then τ is a (t − 1)-simplex σ(y1, π) in A(s, T ) when σ ∈ A(s, T )

(A0(s, T ) when σ ∈ A0(s, T )) Here, q(k) disappears and q(0) becomes q(0) = q(0) + q(k). In case 4, if

πt = k and −k ∈ T , then τ is a (t − 1)-simplex σ(y1, π) in A(s, T ) when σ ∈ A(s, T ) (A0(s, T ) when

σ ∈ A0(s, T )) where s = s− e(k), T = T \ {−k}, and π = (π1, . . . , πt−1). If πt = k and k ∈ T , then τ

is a (t− 1)-simplex σ(y1, π) in A(s, T ) where s = s+ e(k), T = T \ {k}, and π = (π1, . . . , πt−1). Notice

that if t = 1, π1 = 0, and a(0) = 0 then τ = {v}.

Finally, a t-simplex σ(y1, π) inA(s, T ) is a facet of exactly one (t+1)-simplex σ(y1, π) in a nonempty set

A(s, T ) where s is such that sk = 0 for a k ̸∈ I0(s) while sisi for all other i ∈ {1, . . . , n}. If sk = +1

and vk ̸= 0 then T = T ∪ {k} and π = (π1, . . . , πt, k). If sk = +1 and vk = 0 then T = T ∪ {−k}

and π = (π1, . . . , πp−1, k, πp, . . . , πt) where p is such that πp = 0. If sk = −1 then T = T ∪ {−k} and

π = (π1, . . . , πt, k). A t-simplex σ(y1, π) in A0(s, T ) is a facet of exactly one (t + 1)-simplex σ(y1, π)

in a nonempty set A(s, T ) if A0(s) = ∅ and otherwise in A0(s, T ) where s is such that sk = 0 for all

k ̸∈ I0(s) while si = si for all other i ∈ {1, . . . , n}. If sk = +1 and vk ̸= 0 then T = T ∪ {k} and

π = (π1, . . . , πp−1, k, πp, . . . , πt) where p is such that π = 0. If sk = +1 and vk = 0 then T = T ∪ {−k}

and π = (π1, . . . , πp−1, k, πp, . . . , πt) where p is such that πp−1 = 0. If sk = −1 then T = T ∪ {−k} and

π = (π1, . . . , πt, k). This concludes the description of how to follow a sequence of adjacent simplices in a

simplicial subdivision.
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